All light measured outside the bandpass function for this wavelength is the stray light contribution of this pixel that is seen from all other pixels in the detector. The total detected spectra over all excitation wavelengths results in a device-specific matrix. If the bandpass function of the real signal is subtracted, the result is a stray light matrix.
Use of a stray light correction matrix in the calibration process (optional) further optimizes the good stray light values of the CAS 140D. The measuring instrument is thus ideally suited, among others, to accurate measurement of UV-LEDs and determination of the hazard class of light sources (photobiological safety).
The influence of stray light correction on the spectrum is most prominent in the UV and IR spectral range, because the CCD detector of an array spectrometer has a low sensitivity at the edges. Dividing the measured spectrum by the reference spectrum increases the errors in measurement due to stray light-contaminated spectra, especially in areas of lower sensitivity. Stray light correction thus directly results in a higher level of accuracy of the radiometric evaluation, in particular of UV-LEDs.
Stray light correction also improves accuracy in the determination of color coordinates in the visible range. One application that particularly benefits from stray light correction is the evaluation of blue light hazard to the human eye from photobiological safety.